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Abstract:

The paper delivers new aspects to the TLM-
method applied to longitudinally  periodic
structures. This contribution explains the main
features of the method like the parameter
estimation and the phase walls derived from the
Floquet's theorem as well as examples and
compares the obtained results to analytical
solutions and measurements.

I INTRODUCTION

In literature, the calculation of longitudinally
periodic waveguides is usually performed by a
simple approach. According to [1] the Floquet's
- theorem means that each field component F(z)

with FG{Ex,y,z,Hx,y,z} is dependent in the

following form
F(z)= ¢ 0(2) with d(z+)=d(z), (1)

whereby y is the (usually complex) propagation
constant and / the periodicity. This yields

Fz+l)=e 7 F() . )

A similar statement is given in [2]," where only an
imaginary value j/ is treated instead of a complex
%, and the used technique is the FDTD method.
Other attempts treat the problem of periodic

waveguides - also by the help of the Floquet's
theorem - in the frequency-domain [3,4,6].

2 THEORETICAL BACKGROUND

In the following, we apply the Floquet's theorem to
the TLM-method in combination with a new
analytic method in order to reduce the simulation
effort.

It is rather easy to show for periodically connected
longitudinally homogeneous transmission lines
that equations (1) and (2) are valid under the
assumption of missing mode conversion. In [1] a
periodic and capacitively loaded rectangular wave-
guide is calculated. The validity of this approach is
plausible because of obvious considerations, but
generally it is difficult to prove it analytically.

The most general derivation of a system of
differential equations with periodic coefficients as
assumed by Floquet's theorem was found in [5].
The applied method is not represented here for
complexity reasons, but nevertheless it has to be
noticed the real part of the complex propagation
coefficient y =a+j# does not vanish. This is

valid even for periodic waveguides with lossless
materials. Nevertheless, for the simulation the
approximation a ~0 has to be used. Attenuations
would hence become noticeable by a temporal
reduction of the field energy similar to the case of
a simulation of longitudinally homogeneous lossy
lines. The approximation can be regarded as valid
if the attenuations are not too great.

‘The simulation of longitudinally homogeneous and

longitudinally periodic lines is consequently based
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on the same assumption of a coupling between the
field components of the cross-sectional planes at z;
and z,. Hence, the same exchange algorithm can be
used. This is however only under the assumption
of two complete TLM-networks for the simulation
valid. To reduce the effort to one mesh the
knowledge about the z-dependency can be used.
Considering

cos(f + Af) =v, cos(f) , 3)
with given factor v, Jvllgl, £=z, and A¢=p1 , A&

can be determined as
4)

This expression should not depend on & because of
having prescribed that A¢=gl. Thus, a simulation
requires a fixed value of the zero phase i.e. at z;.

Aé = arccos(v1 cos(f)) -£.

This could be done simplest by the help of an
electric ( Pz = 7)) or magnetic ( fry = 0) wall near to

z). Using a magnetic wall the coupling factor
simplifies then to v = cos(f) .

The formulation of the exchange algorithm can
now be described easily. The magnetic wall be
situated at z;. Because of this magnetic wall in an

SCN [9] for Ué’(zl)yields: Ué’(zl)zUé'(zl). The
quantity Ug(zz) is given by the scattering.
Therefore, it has to be calculated in a way that
U9(22) = lez(zl) is valid. Hence follows:

(5)
and 8.

Ué’(zz) = 2"1”5(21) “US(Zz)

and analogously for the gates 4
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Fig. 1: Sinusoidal function with dc-component: Test

functions for automatic parameter analysis. { means the
number of the function value. Diagram a): A quarter period
of a sine function, Diagram b): Curve a is identical to the
first fifth part of diagram a. Curve b is a straight line.

With this exchange algorithm for the cross-
sectional planes at z; and z; some experiments
have been successfully realized. Hereby, it was not
necessary to be in particular carefully while
exciting. This matches even with a statement given
in [2], where also a magnetic wall made the
algorithm "robust".

3 SIMULATIONS AND EVALUATIONS

We applied a method of parameter estimation
already published in [8] to reduce the simulation
time necessary for the analysis of basic modes. An
optimizer searches for the parameters of a function
given by

f(t)=a sin(Zer + ¢) e 4 g (6)

T
to fit the analytic curve to the simulation data. This
search starts using estimated values for the
parameters having an essential influence on the
accuracy of the results. To improve the accuracy
we developed a simple program that estimates the
parameters analytically. We applied both programs
to the data demonstrated in Fig. 1. Even the
parameters of the curve shown in Fig. 1b) were
determined with a relative error of less than 1*1()'4.‘

Hence it follows the possibility of reducing time
consuming simulations of waveguide structures
drastically compared to the analysis of parameters
using Fourier transformations because the last ones
require several complete periods in order to yield
'to some extent exact results.

0-7803-4603-6/97/$5.00 (c) IEEE



| i

] :

Fig. 2: Periodic and capacitively loaded ideal rectangular
waveguide: a = 20mm, b = 10mm, d = 3mm, / = 30mm.
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In {1] a periodic capacitively loaded rectangular
waveguide is calculated. The arrangement is
shown in Fig.2. In this simulation the
conventional excitation using a delta-impulse and
analysis with the help of a Fourier transformation
was performed. The frequencies of the simulation
match well with the behaviour from the
approximate calculations.
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Fig. 3: f-f-diagram of a periodic capacitively loaded
rectangular waveguide. Solid line: analytical approximative
calculation according to [1]. Symbols: simulation results.
Dashed line: curve of the Hjo-type of the not capacitively
loaded rectangular waveguide.

Next, a coplanar line with periodically loaded
outer conductors is investigated (see Fig. 4).
‘Perfectly conducting metal was assumed instead of
gold for the conductors.

The excitation of the fundamental mode should
result with the static electric field of the type.
Therefore, the program using the method of static
finite differences (SFD) has been applied to
calculate and impress this field upon the TLM-
mesh. Hence, the assumptions have been given for
the dispersion analysis by the help of the

parameter estimation of harmonic functions. The
simulation time for each p-value was set to
approximately half of a period duration.
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Fig. 4: Coplanar slow wave line according to [8]. Substrate:
GaAs, geometrical data: b=9um, d = 50um, g=200pm,
h=80pm, o =28um, s=25um, t=1pm, 1=1lcm (200
elementary cells with the length d = 50um of each for the
measurement of the line).

The measurement results from [7] and the
simulation results are represented in Fig. 5. The
agreement between simulation and measurement is
rather good.
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Fig. 5: The v,-f~diagram of a coplanar waveguide depicted
in Fig. 4. a, b: measurement from [7]; x: simulation results;
a: homogeneous line; b: periodically loaded line.

A first simulation with a simulation time of just a
quarter period led to oscillating values of v;-
phase. An analysis of a field component over the
simulation time brought out several subharmonics
which disturbed the above mentioned algorithms
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for the automatic parameter extraction. We were
able to show that these higher-frequency
harmonics  appear immediately when the
simulation parameter [ is changed. Thus, we
increased the simulation time to average out the
subharmonics.

Another problem to be considered concerns the
static field for the first excitation. In Fig. 6 two
time intervals of the TLM-simulation are shown
after excitation with the SFD-field.
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Fig. 6: Transients in the simulation of the coplanar line.
Diagram a): 7,500 time steps after excitation with the static
electric field of the fundamental mode at #=Om™. Diagram
b): 229,000 time steps in addition to diagram a) at
B=282m™.

Obviously, such noisy data disturb the parameter
estimation which makes the relevance of an
extensively terminated transient clear.

4 CONCLUSION

In the frame of this work diverse problems have
been treated in order to be able to simulate and
analyse  longitudinally  periodic  structures

efficiently using the TLM-method: Calculation of
static electric fields by the help of the method of
static finite differences, parameter estimation of
harmonic functions and phase walls.

In conclusion it can be mentioned that it is
possible to receive exact results for longitudinally
periodic structures by applying the TLM-method
combined with the phase walls described above.
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