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Abstract:

The paper delivers new aspects to

method applied to longitudinally
structures. This contribution explains

features of the method like the

the TLM-

periodic

the main

parameter
estimation and the phase walls derived from the
Floquet’s theorem as well as examples and

compares the obtained results to analytical
solutions and measureme~lts.

1 INTRODUCTION

In literature, the calculation of longitudinally

periodic waveguides is usually performed by a
simple approach. According to [ 1] the Floquet’s

theorem means that each field component F’(z)

{
with F c EXY,Z,HXY,Z

1
is dependent in the

following form

F(z) = ef~ Q(Z) with CD(Z+ /) = @(z), (1)

whereby y is the (usually complex) propagation

constant and 1the periodicity. This yields

F(z + i) = e*PF(z) . (2)

,A similar statement is given in [2], where only an

imaginary value j~ is treated instead of a complex

z and the used technique is the FDTD method.

Other attempts treat the problem of periodic

waveguides - also by the help of the Floquet’s
theorem - in the frequency-domain [3,4,6].

2 THEORETICAL BACKGROUND

In the following, we apply the Floquet’s theorem to

the TLM-method in combination with a new

analytic method in order to reduce the simulation

effort.

It is rather easy to show for periodically connected

longitudinally homogeneous transmission lines

that equations (1) and (2) are valid under the

assumption of missing mode conversion. In [1] a

periodic and capacitively loaded rectangular wave-

guide is calculated. The validity of this approach is

plausible because of obvious considerations, but

generally it is dif13cult to prove it analytically.

The most general derivation of a systelm of

differential equations with periodic coefficients as

assumed by Floquet’s theorem was found in [5].
The applied method is not represented here for

complexity reasons, but nevertheless it has to be

noticed the real part of the complex propagation

coefficient y = a i- jfl does not vanish. This is

valid even for periodic waveguides with lossless

materials. Nevertheless, for the simulation the

approximation a = O has to be used. Attenuations

would hence become noticeable by a temporal

reduction of the field energy similar to the case of

a simulation of longitudinally homogeneous lossy

lines. The approximation can be regarded as valid
if the attenuations are not too great.

The simulation of longitudinally homogeneous and

longitudinally periodic lines is consequently based
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on the same assumption of a coupling between the

field components of the cross-sectional planes at Z1

and Z2. Hence, the same exchange algorithm can be
used. This is however only under the assumption
of two complete TLM-networks for the simulation

valid. To reduce the effort to one mesh the

knowledge about the z-dependency

Considering

COS(<+ A4) = VI CoS(;)>

can be used.

(3)

with given factor v1, VI s 1, #=zl and A<= P1 , ~~

can be determined as

A;= EUCCOS(V~ COS(#))- ;. (4)

This expression should not depend on { because of

having prescribed that A;= @. Thus, a simulation

requires a fixed value of the zero phase i.e. at Z1.

This could be done silnplest by the help of an

electric (pzl = z) or magnetic (/lzl = O ) wall near to

Z1. Using a magnetic wall the coupling factor

simplifies then to VI= COS(PI).

The formulation of the exchange algorithm can

now be described easily. The magnetic wall be

situated at Z1. Because of this magnetic wall in an

() 2( l)=u~(zl) ‘“e
SCN [9] for U; Z1 yields: Uh z

()
quantity U; Z2 is given by the scattering.

Therefore, it has to be calculated in a way that

()
U9(Z2) = V1U2 Z1 is valid. Hence follows:

UJ(Z2)=2V1U;(ZI) -UJ(Z2)
(5)

and analogously for the gates 4 and 8.
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Fig. 1: Sinusoidal function with de-component: Test
functions for automatic parameter analysis. t means the
number of the function value. Diagram a): A quarter period
of a sine function, Diagram b): Curve a is identical to the
first fifth part of diagram a. Curve b is a straight line.

With this exchange algorithm for the cross-

sectional planes at Z1 and Z2 some experiments

have been successftdly realized, Hereby, it was not

necessary to be in- particular carefully while
exciting. This matches even with a statement given

in [2], where also a magnetic wall made the

algorithm “robust”.

3 SIMULATIONS AND EVALUATIONS

We applied a method of parameter estimation

already published in [8] to reduce the simulation

time necessary for the analysis of basic modes. An

optimizer searches for the parameters of a function

given by

(6)

to fit the analytic curve to the simulation data. This

search starts using estimated values for the
parameters having an essential influence on the

accuracy of the results. To improve the accuracy
we developed a simple program that estimates the

parameters analytically. We applied both programs

to the data demonstrated in Fig. 1. Even the

parameters of the curve shown in Fig. 1b) were

determined with a relative error of less than 1*10-4.

Hence it follows the possibility of reducing time

consuming simulations of waveguide structures
drastically compared to the analysis of parameters
using Fourier transformations because the last ones

require several complete periods in order to yield

‘to some extent exact results.
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Fig.2: Periodic and capacitively loaded ideal rectangular

waveguide: a=20mm, b= 10mm, d=3mm, l=30mm.

In [1] a periodic capacitively loaded rectangular
waveguide is calculated. The arrangement is

shown in Fig. 2. In this simulation the
conventional excitation using a delta-impulse and

analysis with the help of a Fourier transformation

was performed. The frequencies of the simulation

match well with the behaviour from the

approximate calculations.
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Fig, 3: }fl-diagram of a periodic capacitively loaded
rectangular waveguide. Solid line: analytical approximative
calculation according to [1]. Symbols: simulation results.

Dashed line: curve of the H, O-type of the not capacitively

loaded rectangular waveguide.

Next, a coplanar line–with periodically loaded

outer conductors is investigated (see Fig. 4).
Perfectly conducting metal was assumed instead of

gold for the conductors.

The excitation of the fundamental mode should

result with the static electric field of the type.

Therefore, the program using the method of static
finite differences (SFD) has been applied to

calculate and impress this fielci upon the TLM-
mesh. Hence, the assumptions have been given for

the dispersion analysis by the help of the

parameter estimation of harmonic functions. The

simulation time for each ~value was set to

approximately half of a period duration.
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Fig. 4: Coplanar slow wave line according to [8]. Substrate:

GaAs, geometrical data: b = 9~m, d = 501.ull, g = 200pn1,

h = 80~m, 01 = 28~m, s = 25j.un, t = l~m, 1 = Ictn (200

elementary cells with the length d = 50~m of each for the

measurement of the line).

The measurement results from [7] and the

simulation results are represented in Fig. 5. The

agreement between simulation and measurement is

rather good.
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Fig. 5: The v,,i,-f-diagram of a coplanar waveguide depicted

in Fig. 4. a, b: measurement from [7]; x: simulation results;

a: homogeneous line; b: periodically loaded line.

A first simulation with a simulation time of just a

quarter period led to oscillating values of vfl/,-
phase. An analysis of a field component over the

simulation time brought out several subharrnonics

which disturbed the above mentioned algorithms
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for the automatic parameter extraction. We were

able to show that these higher-frequency
harmonics appear immediately when the

simulation parameter ~ is changed. Thus, we

increased the simulation time to average out the

subharmonic.

Another problem to be considered concerns the

static field for the first excitation. In Fig. 6 two

time intervals of the TLM-simulation are shown

after excitation with the SFD-field.
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Fig. 6: Transients in the simulation of the coplanar line.

Diagram a): 7,500 time steps after excitation with the static

electric field of the fundamental mode at P = Om”l. Diagram

b): 229,000 time steps in addition to diagram a) at

P= 282m-’.

Obviously, such noisy data disturb the parameter

estimation which makes the relevance of an

extensively terminated transient clear.

4 CONCLUSION

In the frame of this work diverse problems have
been treated in order to be able to simulate and
analyse longitudinally periodic structures

efficiently using the TLM-method: Calculation of

static electric fields by the help of the method of
static finite differences, parameter estimation of

harmonic functions and phase walls.

In conclusion it can be mentioned that it is

possible to receive exact results for longitudinally

periodic structures by applying the TLM-method
combined with the phase walls described above.
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